Direct decompositions of basic algebras and their idempotent modifications

Ivan Chajda
e-mail: chajda@inf.upol.cz
Palacký University Olomouc, Czech Republic

Miroslav Kolářík⋆
e-mail: kolarik@inf.upol.cz
Palacký University Olomouc, Czech Republic

1. Introduction

It is well-known that a bounded lattice $L = (L; \lor, \land, 0, 1)$ is directly decomposable into lattices L_1, L_2 isomorphic to the intervals $[a, 1], [b, 1]$ of L if b is a complement of a and a, b are standard elements. Since every basic algebra $A = (A; \oplus, \neg, 0)$ induces a lattice $L(A) = (A; \lor, \land)$ which is bounded by 0 and $1 = \neg 0$, we can ask if also A is directly decomposable whenever there exists a complemented and standard element of $L(A)$. In what follows we show that the condition concerning this element must be enlarged due to the fact that the operations \oplus and \neg cannot be derived by means of the lattice operations of $L(A)$. However, we set up a natural necessary and sufficient condition for the direct decomposability of A.

By a basic algebra (see e.g. [1], [2]) is meant an algebra $A = (A; \oplus, \neg, 0)$ of type $(2, 1, 0)$ satisfying the following four axioms

(BA1) $x \oplus 0 = x$;
(BA2) $\neg \neg x = x$;
(BA3) $\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x$;
(BA4) $\neg (\neg (x \oplus y) \oplus z) \oplus (x \oplus z) = \neg 0$.

As usual, we will write 1 instead of $\neg 0$. We say that a basic algebra A is non-trivial if $0 \neq 1$ (i.e. $|A| > 1$).

Having a basic algebra $A = (A; \oplus, \neg, 0)$, one can introduce the induced order \leq on A as follows

$$x \leq y \text{ if and only if } \neg x \oplus y = 1.$$

It is an easy exercise to verify that \leq is really an order on A and $0 \leq x \leq 1$ for each $x \in A$. Moreover, $(A; \leq)$ is a bounded lattice in which

$$x \lor y = \neg (\neg x \oplus y) \oplus y \text{ and } x \land y = \neg (\neg x \lor \neg y).$$

The lattice $L(A) = (A; \lor, \land)$ will be called the induced lattice of A. In particular for each $a \in A$ there exists an antitone involution $x \mapsto x^a$ on the interval $[a, 1]$ (called a section) where $x^a = \neg x \oplus a$.

It is well-known (see e.g. [1], [3]) that also conversely, if $(A; \lor, \land, (^a)_{a \in A}, 0, 1)$ is a bounded lattice with section antitone involutions, we are able to construct a basic algebra using the operations

$$x \oplus y = (x^0 \lor y)^0 \text{ and } \neg x = x^0.$$
Lemma 1. Let $\mathcal{A} = (A; \oplus, \neg, 0)$ be a basic algebra, \leq the induced order and $a \in A$. Define the polynomial operations \neg_a and \oplus_a on the interval $[a, 1]$ as follows
\[
\neg_a x = -x \oplus a \quad \text{and} \quad x \oplus_a y = -(\neg x \oplus a) \oplus y.
\]
Then $([a, 1]; \oplus_a, \neg_a, a)$ is a basic algebra.

The basic algebra $([a, 1]; \oplus_a, \neg_a, a)$ where the operations \oplus_a, \neg_a are defined as in Lemma 1 will be called an interval basic algebra.

2. Direct decomposibility of basic algebras

Now, we will set up the conditions under which a basic algebra \mathcal{A} can be directly decomposed. First, we define several concepts.

Definition 2. An element a of a basic algebra $\mathcal{A} = (A; \oplus, \neg, 0)$ is called strong if
\[(a) \quad x \oplus a = x \lor a \quad \text{and} \quad x \oplus \neg a = x \lor \neg a\]
for every $x \in A$.

A strong element a of \mathcal{A} is called a decomposing element if it moreover satisfies
\[(b) \quad (x \oplus y) \oplus a = x \oplus (y \oplus a), \quad (x \oplus y) \oplus \neg a = x \oplus (y \oplus \neg a)
\]
and $x \oplus a = a \oplus x$, $x \oplus \neg a = \neg a \oplus x$
for all $x, y \in A$.

Let us note that 0 and 1 are decomposing elements for every basic algebra \mathcal{A}.

Recall (see [4]) that the element a of a lattice $(L; \lor, \land)$ is called distributive if for all $x, y \in L$
\[
(x \land y) \lor a = (x \lor a) \land (y \lor a)
\]
and the element a of a lattice $(L; \lor, \land)$ is called standard if for all $x, y \in L$
\[
x \land (a \lor y) = (x \land a) \lor (x \land y).
\]

Further, recall that if $(L; \lor, \land)$ is a lattice and $a \in L$ then the following two conditions are equivalent:
\[(a) \quad a \text{ is standard}
\]
\[(\beta) \quad a \text{ is distributive and, for } x, y \in L,
\]
\[
a \land x = a \land y \quad \text{and} \quad a \lor x = a \lor y \quad \text{imply that} \quad x = y
\]
(for more details see [4]).

Lemma 3. Let a be a strong element of a basic algebra $\mathcal{A} = (A; \oplus, \neg, 0)$. Then
\[(i) \quad a \text{ is boolean (i.e. } a \lor \neg a = 1, a \land \neg a = 0);\]
\[(ii) \quad a \text{ and } \neg a \text{ are distributive elements.}\]

Lemma 4. Let a be a strong element of a basic algebra $\mathcal{A} = (A; \oplus, \neg, 0)$ and $\neg a$ be a standard element of the induced lattice $\mathcal{L}(A) = (A; \lor, \land)$. Then the mapping $
\varphi_a(x) = (x \lor a, x \lor \neg a)$ is a lattice isomorphism of $\mathcal{L}(A)$ onto the direct product of lattices $([a, 1]; \lor, \land) \times ([\neg a, 1]; \lor, \land)$.

— 2 —
Theorem 5. Let $\mathcal{A} = (A; \oplus, -, 0)$ be a basic algebra. Then \mathcal{A} is isomorphic to a direct product of non-trivial basic algebras $\mathcal{B}_1, \mathcal{B}_2$ if and only if there exists a decomposing element $a \in A$, $0 \neq a \neq 1$ such that $\neg a$ is standard in the induced lattice $\mathcal{L}(A) = (A; \lor, \land)$. If it is the case then \mathcal{A} is isomorphic to the direct product of interval basic algebras $([a, 1]; \oplus_a, \neg a, a)$ and $([\neg a, 1]; \oplus_{\neg a}, \neg \neg a, \neg a)$.

3. IDEMPOTENT MODIFICATION OF BASIC ALGEBRAS

The concept of idempotent modification of an algebra was introduced by J. Ježek [6] as follows.

Definition 6. An idempotent modification of an algebra $\mathcal{A} = (A; F)$ is an algebra $\mathcal{A}_f = (A; F_I)$ with the same underlying set A, where $|F| = |F_I|$ and for every $f \in F$ the corresponding operation $f_I \in F_I$ is defined as follows

(i) if f is at most unary then $f_I = f$;
(ii) if f is n-ary with $n > 1$ and $a_1, \ldots, a_n \in A$ then

$$f_I(a_1, \ldots, a_n) = \begin{cases} a_1 & a_1 = a_2 = \cdots = a_n \\ f(a_1, \ldots, a_n) & \text{otherwise.} \end{cases}$$

The main result of [6] is that for any group G its idempotent modification G_I is subdirectly irreducible.

In what follows we will treat direct decomposability of an idempotent modification of a basic algebra.

For this we slightly modify our definition of basic algebra. As mentioned above, every basic algebra $\mathcal{A} = (A; \oplus, -, 0)$ has induced lattice $\mathcal{L}(A) = (A; \lor, \land)$ where \lor and \land are term operations of \mathcal{A}. Hence, inserting \lor and \land into the type of \mathcal{A}, we obtain an algebra with the same clone of term operations and hence term equivalent to \mathcal{A}. From now on, by a basic algebra we will understand an algebra $\mathcal{A} = (A; \oplus, -, 0, \lor, \land)$ where the term operations \lor and \land are defined by $x \lor y = \neg(\neg x \oplus y) \oplus y$, $x \land y = \neg(x \lor \neg y)$.

The reason of this insertion is that when an idempotent modification of $(A; \oplus, -, 0)$ is considered, the resulting algebra does not have the lattice structure. However, if $\mathcal{A} = (A; \oplus, -, 0, \lor, \land)$ is treated then the lattice structure for \mathcal{A}_f is preserved because both \lor and \land are idempotent operations on A.

Theorem 7. Let $\mathcal{A} = (A; \oplus, -, 0, \lor, \land)$ be a basic algebra whose at least one element is not boolean. Then its idempotent modification $\mathcal{A}_f = (A; \lor_I, -, 0, \lor, \land)$ is not directly decomposable.

Call a basic algebra $\mathcal{A} = (A; \oplus, -, 0)$ distributive if the induced lattice $\mathcal{L}(A) = (A; \lor, \land)$ is distributive. For example, if \mathcal{A} is commutative then \mathcal{A} is distributive (but not vice versa) see e.g. [1]. For distributive basic algebras, we can modify our result as follows

Corollary 8. Let $\mathcal{A} = (A; \oplus, -, 0, \lor, \land)$ be a distributive basic algebra with $|A| > 2$. Then its idempotent modification is directly indecomposable if and only if \mathcal{A} contains an element which is not boolean.
REFERENCES