Databases

dr. Jörg Verstraete

Polish Academy of Sciences
Systems Research Institute

jorg.verstraete@ibspan.waw.pl
http://www.mini.pw.edu.pl/~verstraetej/
Contents

- Introduction
- Relational database systems
- Database design
- Normalisation
- SQL
- Data
- OLTP systems, transactional processing, locks
- Stored procedures, triggers, functions, …
- GIS systems
- Data warehouse, OLAP, Business intelligence
- Java based client applications and database APIs
- …
Practical matters

• Lectures
 – Friday, 10.00 (+Wednesday 23/03, 15/06)
 • room 102
• Labs
 – Friday, 12.00 / Friday, 14.00 / Friday, 16.00
 • room 302
• Evaluations
 – 3-4 assignments to be prepared during the labs
 – exam
 – Final grade depends on total points
Practical matters

• E-mail
 – jorg.verstraete@ibspan.waw.pl

• Website
 – http://www.mini.pw.edu.pl/~verstraetej
 • Announcements
 • Slides, tasks, solutions, files, links, ...
Today

• Lecture
 – General introduction in database concepts
 – Terminology
 – Models

• Labs
 – MS SQL Server 2014
 • user interface
 • practical implementation of concepts
 • environment for SQL labs, focus on generic SQL
Database

• Definition
 - Set of **positive** facts concerning the real world, from the **universe of discourse**, stored in a **persistent** manner.
 - Universe of discourse
 - Positive information
 - Persistent

For most databases, the content can be imagined as a set of tables containing the description of real world facts

<table>
<thead>
<tr>
<th>Building name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Building</td>
<td>Room</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Room</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Only existing rooms are stored
Database - example

- Real world information is filtered and checked
- Many databases are possible for one organisation: different universes of discourse
Database system and DBMS

• Database System
 – “Cost-effective method for storing, organising, retrieving and managing data” (J.C. Shepherd)

• Database Management System (DBMS)
 – Computer system for managing a database
 • Hardware
 • Software
 • Data
 – Two layer architecture
 • Internal layer: interfaces with physical devices / hardware
 • Logical layer: data
DBMS

• Database Management System
 – Typical representation
 • Set of disk files or partitions containing data
 • Appropriate organization to facilitate and speed up information retrieval and update
 – Specializations
 • Distributed databases
 • Spatial databases
 • Multimedia databases
 • Data warehouses
 • Data mining applications
Database system and DBMS

- **Database Management System (DBMS)**
 - Interacts between user applications and database to provide access to the data
 - Supports administrative tasks of DBA, which includes creating and manipulating databases.

 - **components**
 - DBMS, application software, tools, communication software, data-warehousing, data analysis software, report generators

 - **examples**
 - SQL Server, Oracle, MySQL, PostGRES, DB2, Sybase, ...
DBMS

• Main functionality
 – Database definition
 – Database manipulation
 – Database construction

• Secondary functionality
 – Sharing data
 – Securing data
 – Optimization
 – Administration and verification
Users

- Data administrator (DA)
 - Responsible for data
 - design of the database, strategies, user profiles, security, processing, etc.

- Database administrator (DBA)
 - Responsible for the database
 - consistency, performance checking, performing backup/restore,

- Software developer

- End user
 - simple: access via application (limited complexity)
 - advanced: access via database language (full complexity)
Database and DBMS

- Data processing teams
- DBA
- Software developer
- End users

Utility programs (e.g. security manager)

Application programs (e.g. sales applications)

DBMS

Database

Database
Why a database?

<table>
<thead>
<tr>
<th>Flat files (TXT, XML, CSV, ...)</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Special structures (indexes) speed up information retrieval</td>
</tr>
<tr>
<td>Limited: slow to find the data a user is looking for.</td>
<td>Radix trie, Patricia Trie</td>
</tr>
<tr>
<td>Queries</td>
<td>Any query can be answered (e.g. all the clients who bought product A last week, but never ordered more than 50 items of product B)</td>
</tr>
<tr>
<td>Only simple queries</td>
<td></td>
</tr>
<tr>
<td>! regular expressions</td>
<td></td>
</tr>
<tr>
<td>Concurrency</td>
<td>Constant updates can be performed on the fly. Transactional processing ensures consistency</td>
</tr>
<tr>
<td>Difficult to concurrently apply changes on behalf of many users</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>Complicated permission system secures the data</td>
</tr>
<tr>
<td>Anyone with access to the file can modify/damage it</td>
<td></td>
</tr>
<tr>
<td>Robustness</td>
<td>Various backup strategies possible, e.g. incremental backup</td>
</tr>
<tr>
<td>Difficult to make a backup of a file that is constantly modified</td>
<td></td>
</tr>
</tbody>
</table>

Most applications need to store data permanently. Whenever multiple users share the data, a database is needed.
Database categories

- Historical
 - Operational models
 - inverted list, hierarchical model, network model, ...
 - Structural models
 - semi-relational, relational, ...
 - Semantic models
 - RM/T, object-relational, object-oriented, ...
 - Other models
 - spatio-temporal, deductive, fuzzy and uncertain, ...
Database categories

• Based on how data is managed
 – DBMS engine embedded in a database application
 – DBMS server application that works on behalf of database applications and is accessible over the network
Traditional file based approach

• Example

[Diagram showing file server connected to databases through network communication]

- Sales
 - DBMS engine
- Inventory
 - DBMS engine
- Accounting
 - DBMS engine

All database applications access the database through an embedded DBMS engine, a software library.

The database in this case is just storage, e.g. a collection of files.
File-based approach

- Applications access the database using embedded libraries:
 - data is typically transferred over the network for updates/queries
 - poor scalability for bigger databases
 - possible network congestion
 - higher requirements to clients (CPU, …)
 - limited security
 - files can be copied and or modified by the users
 - network problems may result in partial updates and/or damaged file structure
Client-server approach

- Example

Server or server cluster

- e.g. MS Windows, UNIX, Linux, ...

SQL statements (local or over network)

- Clients interact with the database server, a server side application that fulfills requests by the applications and modifies/queries the data on their behalf.

- Sales
- Inventory
- Accounting

- Database server (DBMS engine)

- Database
Client-sever approach

- Applications access the database by communicating with the database server:
 - Only queries and query results are transferred over the network.
 - Improved scalability for bigger databases
 - limited increase in network
 - increased demand in computing resources is server side as processing happens on the server
 - Security
 - server can impose security constraints and permissions
 - server can insure data integrity
File-based and client-server DBMS

<table>
<thead>
<tr>
<th></th>
<th>File based (historically mostly)</th>
<th>Client-server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>• MS Visual FoxPro</td>
<td>MS SQL Server, ...</td>
</tr>
<tr>
<td></td>
<td>• dBase</td>
<td>Oracle >5 (1985!), ...</td>
</tr>
<tr>
<td></td>
<td>• MS Access</td>
<td>mySQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apache HBase</td>
</tr>
<tr>
<td>No. of concurrent users</td>
<td>± 1-50 users</td>
<td>1-millions of users</td>
</tr>
<tr>
<td>Data integrity</td>
<td>Limited (network errors can corrupt data)</td>
<td>Advanced mechanisms to maintain integrity (transactional processing, ...)</td>
</tr>
<tr>
<td>Security</td>
<td>Limited</td>
<td>Increased (database user accounts, detailed permissions, data files not directly accessible to end users and client applications)</td>
</tr>
</tbody>
</table>
Web based access

- Reduced hardware requirements
- Easier maintenance (up to date browser client)
- Usually reduced total cost of ownership
- No need to install applications on client workstations

For all these reasons, many database applications are developed as web applications: access to the database is provided via an application that runs in a web browser